rxcr.net
当前位置:首页 >> 极限的几种求法 >>

极限的几种求法

极限的求法有很多中:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小

基本方法有:(1)、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无 (3)、运用两个特别极限;(4)、运用洛必达法则,但是洛必达法则的运用条件是

二元函数求极限是高数中的难点,现归纳了6种求二元函数极限的方法,分别为:直接证明、先估值后证明、利用二元函数的连续性、用无穷小量与有界变量的乘积仍为无穷小量的结论、用重要极限limx>0sinx/x=1、用两边夹定理

0*∞, 0/0, ∞/∞, 等等,都是不定式.一般可用罗比它法则求导.也就是分子分母同求导.

1、利用定义求极限. 2、利用柯西准则来求. 柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|0 (2)lim (1 1/n)^n=e ->∞ 7、利用单调有界必有极限来求. 8、利用函数连续得性质求极限. 9、用洛必达法则求,这是用得最多的. 10、用泰勒公式来求,这用得也很经常.

我来说几个基础的:① 利用函数连续性:lim f(x) = f(a) x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0) ②恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零.第二:若分母出现根号,可以配一个因子是根号去除.第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方.(通常会用到这个定理:无穷大的倒数为无穷小) 当然还会有其他的变形方式,需要通过练习来熟练.③通过已知极限 特别是两个重要极限需要牢记.具体的还是需要通过习题来熟练,这里不方便打出来,有问题再联系吧.

函数、极限与连续典型例题1.填空题(1)函数f(x)1的定义域是 . ln(x2)14x2的定义域是. ln(x2). (2)函数f(x)(3)函数f(x2)x24x7,则f(x)3xsin1,x

1、4x-y^2≥0 1-x^2-y^2≥0 1-x^2-y^2≠1 y^2/4≤x ≤1 -1≤y≤1 x≠0 - 2、1+xy-1 没写错? lim xy / [√(1+xy-1) (x→0,y→0) =lim xy / √(xy) =lim √(xy) =0

①利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形因式分解等③通过已知极限特别是两个重要极限需要牢记.

高中极限?高中极限应该比较简单吧,就是不断化简然后约掉.给你一个最初级的方法就是分子分母可以同时除以未知项的最高次项,这样就低次项就全部没了

so1008.com | gyzld.cn | pdqn.net | ymjm.net | nwlf.net | 网站首页 | 网站地图
All rights reserved Powered by www.rxcr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com